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We analyze the carrier energy band structure in a three-dimensional regimented array of
semiconductor quantum dots using an envelope function approximation. The coupling among
quantum dots leads to a splitting of the quantized carrier energy levels of single dots and formation
of three-dimensional minibands. By changing the size of quantum dots, interdot distances, barrier
height, and regimentation, one can control the electronic band structure of this artificial quantum dot
crystal. Results of simulations carried out for simple cubic and tetragonal quantum dot crystal show
that the carrier density of states, effective mass tensor and other properties are different from those
of bulk and quantum well superlattices. It has also been established that the properties of artificial
crystal are more sensitive to the dot regimentation rather then to the dot shape. The proposed
engineering of three-dimensional mini bands in quantum dot crystals allows one to fine-tune
electronic and optical properties of such nanostructures. © 2001 American Institute of Physics.
�DOI: 10.1063/1.1366662�

I. INTRODUCTION

Quantum dots represent the ultimate case of spatial con-
finement for electrons and holes. This creates an exciting
opportunity for controlled modification of carrier states in
these entities, and re-engineering of optical, electronic, and
thermoelectric properties of many technologically important
semiconductor materials.1–3 In most cases, it is more practi-
cal to deal with arrays of semiconductor quantum dots or
multiple arrays, e.g., stacks of quantum dots, which are also
referred to as quantum dot superlattices �QDS�.3,4 Quantum
dot arrays grown by molecular beam epitaxy �MBE� can be
completely random,5,6 partially regimented, such as QDS
with vertical dot site correlation,3,4 or may have very high
degree of regimentation.7,8 The self-organization of pyrami-
dal PbSe islands during strained-layer epitaxial growth of
PbSe/Pb1�xEuxTe has resulted in the formation of three-
dimensional �3D� quantum dot crystals with the dots ar-
ranged in a trigonal lattice with a face-centered-cubic-like
vertical stacking sequence.7 Recently, the tuning of lateral
and vertical regimentation in self-organized QDS by changes
in the spacer thickness and growth conditions has been
demonstrated.8 Other quantum dot synthesis techniques, such
as electrochemical self-assembly, have also led to a high
degree of lateral regimentation resulting in hexagonal quan-
tum dot arrays.9,10

In comparison to conventional quantum well
superlattices11 or multiple quantum well structures,12 QDS
that consists of multiple arrays of quantum dots may have
many advantages in applications due to its modified density
of electronic states and optical selection rules. For example,
due to relaxed intraband optical selection rules in QDS, they

are capable of absorbing normally incident radiation3,4 while
it is not possible in quantum well superlattices. The latter
makes QDS a good candidate for infrared photodetector ap-
plications. QDS based on Si/Ge material system has also
been recently proposed for applications as a high-
temperature thermoelectric element.13 Many more applica-
tions are envisioned for regimented QDS.2 Although differ-
ent types of regimented QDS had already been fabricated
using self-assembly techniques,7–10 very little attention has
been paid to theoretical description of carrier and phonon
transport in such structures.13,14

In this article, we analyze the carrier energy band struc-
ture in a 3D regimented array of semiconductor quantum
dots using an envelope function approximation. The regi-
mentation, e.g., spatial site correlation, along all three direc-
tions results in the formation of an artificial crystal, where
quantum dots play the role of atoms. Thus, we refer to this
structure as a quantum dot crystal �QDC�. We particularly
focus our attention on orthorhombic and simple cubic QDC
that consist of very small �feature size on the order of 5–10
nm� Ge quantum dots grown on Si and surrounded by Si cap
layer. In the next section, we outline the theoretical formal-
ism used for calculating 3D energy minibands and the effec-
tive mass tensor. It is followed by Sec. III, which presents
results of the numerical simulation and discussion. Our con-
clusions are given in Sec. IV.

II. FORMALISM

For simplicity, we restrict our analysis to orthorhombic
symmetry for both the QDS and the single quantum dot as
shown in Fig. 1�a�. Thus, the electron dispersion relation
derived here is valid for QDCs of Fddd(D2h

24) and some
higher space symmetry groups. Here, we consider simple
cubic and tetragonal structures as particular cases of ortho-
rhombic lattice symmetry. These structures are similar to
MBE grown Ge/Si QDS with vertical site correlation.3,4 We
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neglect phenomena associated with the ‘‘true’’ Bloch func-
tions of carriers that have the periodicity of an atomic scale.
Instead, we focus our attention on the envelope functions
that enter our formalism as quasi Bloch functions for the
QDC. In Fig. 1�a� we also show the notations used through-
out the rest of the article.

Theoretical models for quantum dots within the enve-
lope function approximation usually lead to a complex mul-
tidimensional Schrodinger equation, which needs to be
solved using finite elements method,15 or plane wave
expansion.14 Application of the pseudopotential methods for
QDC is computationally challenging. The goal of this work
is to develop a simple, almost analytical, formalism for car-
rier transport in QDC that would serve as a useful tool for
experimentalists and materials growers. Thus, we chose a
specific form of the confining potential that allows us to
simplify the problem in real space yet giving a rather accu-
rate description of the carrier transport in realistic structures.

Let us consider the motion of a charge carrier in a host
crystal in the presence of the additional potential V(r). We
assume the structure to be isomorphic with defect-free inter-
faces. We restrict our analysis to heavy holes in Ge/Si QDC.

This is done for several reasons. First of all, there is a sig-
nificant practical interest to this material system. Second,
most of the band gap discontinuity between Si and Ge goes
to the valence band. Third, the potential energy maximum in
the valence band is located in � point, which greatly simpli-
fies the model and justifies our omission of carrier Bloch
functions from consideration.

The Schrödinger equation that describes the motion of a
single hole in such a system can be written in the following
form

��
�2

2
�r

1

m*�r�
�r�V�r����r��E��r�. �1�

Here, the atomic structure of the host semiconductor enters
the analysis as an effective mass m*. This parameter as-
sumes different values in the quantum dot and the barriers.
The potential V(r) corresponds to an infinite sequence of
quantum dots of size Lx , Ly , and Lz separated by the barri-
ers of thickness Hx , Hy , and Hz . We assume that it is
written as a sum of three independent periodic functions of
coordinates x, y, and z with periods of dx , dy , and dz(d	

�L	�H	):

V�r��Vx�x ��Vy�y ��Vz�z �, �2�

where

V	�	��� 0 if �	�
	d	��L	/2

V0 if �	�
	d	��L	/2
. �3�

Here 
	 are the integer numbers and subscript 	 denotes a
particular coordinate axis. This choice of potential allows us
to separate the carrier motion along three coordinate axes.
The 3D Schrödinger equation decouples in this case into
three identical one-dimensional �1D� quantum-well superlat-
tice equations. The 3D envelope wave function ��r� can
therefore be presented as a product of three 1D eigenfunc-
tions �	 in the following way

��r �
�nx ,ny ,nz
�x ,y ,z ���nx

�x ��ny
�y ��nz

�z �. �4�

Here n� denote the quantum number. The total energy spec-
trum for this wave function is given by

Enxnynz
�Enx

�Eny
�Enz

, �5�

where En are the eigenvalues of the one-dimensional Schrö-
dinger’s equation.

For the chosen geometry of QDC and band offsets the
carrier wave functions and energy spectrum are mostly deter-
mined by the nearest-neighbor interaction between dots sepa-
rated by the potential barrier V0 . The corner potentials in-
duce only minor corrections, which are particularly small for
the below-the-barrier states. This observation is important
because the confining potential of Eqs. �2� and �3� does not
describe a simple QDC of a rectangular quantum dot sur-
rounded by the potential barrier of the equal height. In two
dimensions, this situation is illustrated in Fig. 1�b�. The dots
are separated from their nearest neighbors by a potential bar-
rier of the height V0 , but in the corners, the height of the
potential barrier is 2V0 . Similarly, in 3D, there exist outer
regions where the overlap of 1D potentials along each axes

FIG. 1. �a� Schematic structure of the orthorhombic QDC; and �b� confining
potential for the region �z�nzdz��Lz/2. Note that the carrier states in quan-
tum dots are mostly determined by interaction with nearest-neighboring dots
separated from each other by the potential V0 .
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gives rise to a potential barrier of 3V0 . Thus, our exact so-
lution for a given potential of Eqs. �2� and �3� presents a very
good approximation for more realistic QDC potentials with
the constant barrier height.

The solution of Eq. �1� with the potential of Eqs. �1� and
�2� has the form familiar from the Kronig–Penny model16

cos�q	d	��cos�k	
WL	�cos�k	

BH	��
1

2 � k	
BmW*

k	
WmB*

�
k	

WmB*

k	
BmW*

�
�sin�k	

WL	�sin�k	
BH	� if E	�V0 , �6a�

cos�q	d	��cos�k	
WL	�cosh�k	

BH	�

�
1

2 � �
k	

BmW*

k	
WmB*

�
k	

WmB*

k	
BmW*

� sin�k	
WL	�sinh�k	

BH	�

if 0�E	�V0 , �6b�

where

k	
B�

�2mB*�E	�V0�
�

, k	
W�

�2mW* �E	�
�

. �7�

The effective masses mB* and mW* used in Eqs. �6� and �7�
depend on the crystallographic orientation of the quantum
dot interfaces. Equations �6� and �7� allow us to calculate the
carrier dispersion relation E(q)�Ex(qx)�Ey(qy)�Ez(qz)
in the QDC. Since for each given value of q	 there is an
infinite number of solutions, we use the miniband index n	 to
label the carrier energy.

In the next section, we show that despite the simplicity
of the theoretical formalism used, it is capable of capturing
new features characteristic for 3D artificial QDC that are not
present in real bulk crystals and quantum well superlattices.

III. RESULTS AND DISCUSSION

We carry out our analysis of the 3D minibands in the
artificial QDC, on the example of Si/Ge material system.
The considered structure is similar to the multiple arrays of
small Ge quantum dots grown on �001� Si by solid-source
MBE.3,4 Approximately 90% of the band offset in such a
structure goes to the valence band.4 The interaction between
heavy and light-hole states is neglected because they are sig-
nificantly split by the strain,16 and the light-hole states are
above the barrier. The band offset for the heavy holes is
approximately equal to 0.45 eV.17 In our calculations, we
used the following values for the effective masses mW*
�mGe* �0.28 m0 and mB*�mSi*�0.49 m0 . Microscopy has
shown that most of self-organized quantum dots have a py-
ramidal or hut cluster form with dimensions of 10–100 nm.1

Thus, a single dot could be thought of as a finite-barrier
cubic dot with four additional perturbing potentials.18 The
latter justifies our assumption of orthorhombic QDC. More-
over, as it will be shown, the band structure is much more
sensitive to the dot regimentation rather than to the dot
shape.

FIG. 2. Dispersion relation in a cubical QDC shown along ��100��, ��110��,
and ��111�� quasi crystallographic directions in �a�, �b�, and �c�, respectively.
The energy in units of eV is counted from the position of the potential
barrier. The dot size is Lx�Ly�Lz�6.5 nm and the interdot distance is
Hx�Hy�Hz�1.5 nm. Material parameters used in simulation correspond
to the valence band of Ge/Si system.
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Figures 2�a�–2�c� present hole dispersion in a simple cu-
bic QDC along three quasi crystallographic directions. For
convenience, the energy is counted from the position of the
potential barrier. One should emphasis here that directions
denoted as ��100��, ��110��, and ��111�� are associated with
the ordering of the quantum dots and are not related to the
three high-symmetry directions of the Si crystal itself. In
order to distinguish quasicrystallographic directions, we use
double square brackets in the rest of this article. The carrier
wave vector is denoted by q with subscript showing particu-
lar quasi crystallographic direction. Zero energy along the
ordinate axis corresponds to the position of the potential bar-
rier. The results in Fig. 2 are shown for a QDC that consists
of quantum dots with the size L�6.5 nm and interdot dis-
tance H�1.5 nm. The energy bands are denoted by three
quantum numbers nxnynz with the superscript indicating the
degeneracy of the band. Note that here the spin degeneracy is
not counted. It will be taken into account below when we
calculate the carrier density of states. Like in real crystals,
the energy in QDC has the full symmetry of the reciprocal
lattice. It repeats both translation and point group symmetry
of the crystal, in addition to the time reversal symmetry re-
sulting in E(q)�E(�q). The energy bands shown in Fig. 2
are degenerated in the center of the quasi Brillouin zone
�QBZ� of the artificial crystal. The highest, sixfold, degen-
eracy is achieved in minibands of cubical QDC characterized
by different quantum numbers nxnynz . If two of these three
quantum numbers are equal, the degeneracy is threefold. Fi-
nally, if nx�ny�nz there is no symmetry degeneracy in such
a miniband. Moving from the point of high symmetry in the
center of the QBZ to a point of lower symmetry, the energy
bands split.

Unlike in real crystals, where it is difficult to find degen-
eracy more than twofold away from the highly symmetrical
points of the Brillouin zone,19 in artificial cubical QDC the
degeneracy can be up to sixfold along ��111�� quasi crystal-
lographic direction even far from the center of QBZ. It is
achieved when both the quantum dot sizes and the interdot
distances are equal along all three axes �see Fig. 2�c��. This
degeneracy is a result of the same symmetry of the dot and
the superlattice. If their symmetries are different, the twofold
degeneracy will be the maximum permitted in all directions.
One can see from Fig. 2 that an incidental degeneracy �or
zone crossing� can happen in the center of the QBZ.20 The
latter results in a complicated energy dependence of the car-
rier density of states �DOS�.

A carrier DOS, which is a number of carrier states in an
interval of energy per unit volume, is an important for virtu-
ally all electronic and optical applications of semiconductor
structures. From elementary considerations DOS, denoted as
G(E), is given by

G�E ��
2

dE � d3q. �8�

The integral is to be taken over the volume of the q space
bounded by a surface of constant energy E. The factor 2
reflects the two-fold electron spin degeneracy. The results of
our numerical simulation of DOS in a cubical quantum dot
crystal are presented in Figs. 3�a�–3�c� for 3D minibands

with different symmetry. The parameters of QDC are chosen
to be the same as those used in Fig. 2. The arrows in Fig. 3
indicate particular quasi crystallographic points. The points
of high symmetry correspond to analytic critical points with
van Hove singularities. Note that the shape of DOS is de-

FIG. 3. DOS in a cubical QDC for 3D minibands defined by the following
quantum numbers: �a� nx�ny�nz�1; �b� nx�ny�1 and nz�2; and �c�
nx�1, ny�2, and nz�3. The dot size is Lx�Ly�Lz�6.5 nm and the inter-
dot distance is Hx�Hy�Hz�1.5 nm. The arrows indicate particular quasi
crystallographic points. The energy in units of meV is counted from the
position of the potential barrier. Note that the QDC DOS is different from
that in bulk and in quantum well superlattices.
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fined by the quantum numbers of the corresponding mini-
band. The one shown in Fig. 3�a� corresponds to quantum
numbers nx�ny�nz ; while those shown in Figs. 3�b� and
3�c� correspond to nx�ny�nz , nx�ny�nz or nx�nz�ny ;
and nx�ny�nz , respectively. In cubical QDC, the mini-
bands that correspond to the cases shown in Figs. 3�b� and
3�c� can be symmetry degenerated up to three and six, re-
spectively. Thus, in calculating DOS one has to multiply
G(E) by this degeneracy factor. One should mention here
that the areas under each DOS curve, e.g., integral of each
DOS, are all equal and defined by the density of quantum
dots in a crystal.

Although the formalism that we used is rather simple it
captures the specific features of electron transport in QDC.
Thus, the obtained DOS is different from that in conven-
tional quantum well superlattices with finite potential barrier.
In quantum well superlattices, the electron DOS has an
arccosine-like form superimposed over characteristic ‘‘stair-
case’’ due to two-dimensional 2D electron continuum in
planes perpendicular to the growth direction.21 The situation
is obviously different in the quantum dot crystal �see Figs.
3�a�–�c��. Although for the lowest miniband, the DOS in the
artificial crystal has an arccosine-like edge, it drops down to
zero at some higher energy since there is no 2D continuum
�Fig. 3�a��, and becomes much more complicated for the next
minibands �Figs. 3�b� and 3�c��.

The formation of 3D minibands in QDC is illustrated in
Figs. 4�a�–4�b�. It is well known that a single quantum dot
has discrete spectrum below a potential barrier and continu-
ous spectrum above the potential barrier. When quantum
dots are separated by a finite barrier and positioned very
close to each other so that there is a significant wave function
overlap, the discrete energy levels split into minibands. This
can be seen in Fig. 4�a� for the interdot distance H below 3
nm. Note that this value is calculated for Si/Ge system. For
other material systems, such as InAs/GaAs, the splitting will
occur at much larger distances. As the interdot distance in-
creases, and the wave function overlap decreases, the mini-
bands below the potential barrier reduce to discrete levels.
This behavior is expected and consistent with what one ob-
serves in conventional quantum well superlattices. The 3D
regimentation of quantum dots in QDC leads to appearance
of ‘‘resonant’’ quasidiscrete energy levels above the poten-
tial barrier V0 for large interdot distances �H�4 nm for Si/
Ge� as seen in Fig. 4�a�. These separate levels form due to
the 3D periodicity of carrier envelopes, which appear in the
equations describing the artificial crystal as quasi Bloch
functions. It is interesting to note that the nature of these
separate energy levels is entirely different from that of dis-
crete states below the barrier. The former are the states de-
fined by infinitely extended wave functions arising due to
Born–von Karman periodic boundary conditions while the
latter are essentially localized states. Figure 4�b� demon-
strates a transformation of QDC minibands into discrete lev-
els below the potential barrier and quasicontinuum above the
barrier. Other important observations to make in Fig. 4�b� are
that the miniband width does not increase monotonously
with the energy, and that for realistic interdot distances com-
plete energy gaps �stop bands� are formed in QDC. In real

crystals, the finite extend of the structure and fluctuations in
the dot position will unavoidably lead to a finite linewidth of
the described quasi discrete states, but the spectrum will still
be different from a regular continuum.

For all suggested practical applications of single quan-
tum dots, QDS, and QDC, it is important to know the effec-
tive mass of electrons and holes. While in single quantum
dots the effective mass will be mostly defined by the material
of the dot, crystallographic direction and the strain distribu-
tion, in QDC it will strongly depend on the periodicity and
regimentation of the dots in the artificial crystal. A reciprocal
effective mass tensor in QDC is defined as

� m0

M*�
��

�
m0

�2

�2E

�q��q�
, �9�

where � and � correspond to axes in the coordinate system
associated with QDC �see Fig. 1�. The simulation shows that
the effective mass in QDC is highly anisotropic and strongly
dependent on the miniband index, e.g., quantum numbers

FIG. 4. �a� Miniband width as a function of the interdot distance H. The size
of the dots is L�6.5 nm. The important observation is that even the mini-
band, which lies above the barrier (E�0), evolves to a discrete level as the
interdot distance increases. �b� Miniband energy as a function of dot size.
The interdot distance is H�1.5 nm.
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that define the miniband �see Figs. 5�a�–5�c��. The values of
the effective mass shown in Figs. 5�a�–5�c� are normalized
by the free electron mass. One can see that the effective mass

in QDC is almost always different from that one in the cor-
responding bulk material. The effective mass in bulk Ge is
also shown in the Figs. 5�a�–5�c� marked as mGe* . The points
at the Brillouin zone where the effective mass has a discon-
tinuity of the second type are related to a bend of the corre-
sponding dispersion branch. The branches of the negative
effective mass can be easily correlated with carrier disper-
sion shown in Figs. 2�a�–2�c�. These drastically different
values of the effective mass tensor in a QDC will unavoid-
ably lead to a modification of electronic and thermoelectric
properties of semiconductor materials that comprise the arti-
ficial crystal.

The carrier motion perpendicular to the sides of quantum
dots is defined by only one quantum number that describes
quantization in the direction of motion. In this case a family
of minibands �with the same quantum number nx and differ-
ent quantum numbers ny and nz� is characterized by the same
effective mass �see Fig. 5�a��. Thus, along ��100�� direction,
the carrier transport in QDC is similar to the one in conven-
tional quantum well superlattices. The effective mass along
��110�� direction is determined by two quantum numbers, so
that few minibands have the same value of the effective mass
�see Fig. 5�b��. Transport along ��111�� direction, e.g., cube
diagonal, is more complicated and the effective mass is dif-
ferent for each branch �see Fig. 5�c��. Application of an elec-
tric field along this direction would initiate carrier transport
significantly different from that in quantum well superlat-
tices.

So far, we have limited our numerical analysis to simple
cubic QDC. The formalism presented in Sec. II allows us to
treat more general types of quantum dot shape and regimen-
tation, such as tetragonal or orthorhombic QDC. As we
briefly mentioned, the same symmetry of the dot and the
superlattice lead to the additional degeneracy �see Figs.
2�a�–2�c��. Once the symmetries are different, part of the
degeneracy will be lifted. The latter is illustrated in Fig. 6,
where we show carrier dispersion in the valence band of
Ge/Si tetragonal QDC with the cubic dots (Lx�Ly�Lz

�6.5 nm) but with different interdot distances Hx�Hy

�1.5 nm, Hz�1.0 nm. The dispersion is shown in ��111��
quasi crystallographic direction.22 We have carried out cal-
culations for a variety of other structures with different dot
sizes and interdot distances. The important conclusion that
was drawn from these numerical simulations is that the struc-
ture of minibands is more sensitive to the arrangement of
quantum dots rather than to the shape of the dots. The latter
is analogous to the observation made for real crystals, which
is called the Hume–Rothery rule.23 It states that the Brillouin
zone structure depends on the basic crystal lattice, and not
much on the actual ions that occupy the lattice sites.

IV. CONCLUSION

The carrier band structure in a 3D regimented array of
semiconductor quantum dots, e.g. QDC, has been analyzed.
Numerical simulations have been carried out for the valence
band of a Ge/Si quantum dot crystals with parameters close
to the MBE grown structures. It was shown that the coupling
among quantum dots leads to a splitting of the quantized

FIG. 5. Heavy-hole effective mass in a Ge/Si cubical QDC along ��100��,
��110��, and ��111�� quasi crystallographic directions. The dot size is L
�6.5 nm and the interdot distance is H�1.5 nm.
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electron energy levels of single dots, which results in the
formation of 3D minibands. By changing the size of quan-
tum dots, interdot distances, barrier height, and regimenta-
tion, one can control the electronic band structure of this
artificial crystal. It was also demonstrated that the density of
electronic states and the effective mass tensor in such a crys-
tal are significantly different from those in bulk and quantum
well superlattices. The properties of the artificial crystals
turned out to be more sensitive to the dot regimentation than
to the dot shape.
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FIG. 6. Dispersion relation in a tetragonal quantum dot crystal shown along
��111�� quasi crystallographic direction. The dot sizes are Lx�Ly�Lz

�6.5 nm. The interdot distances are Hx�Hy�1.5 nm and Hz�1.0 nm.
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